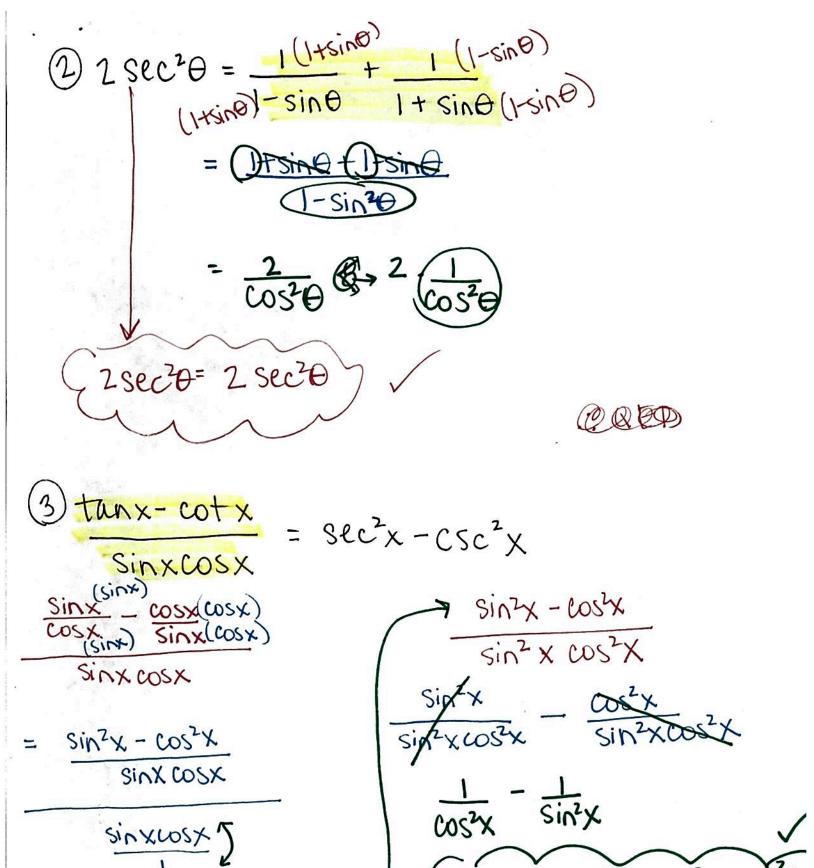
Verifying Trig Equations Notes


- 1. You may only work on one side of the identity. As a general rule, you should choose to work on the more complex side.
- 2. Perform algebraic operations:
 - a) Factor
 - b) Simplify
 - c) Combine fractions
 - d) Combine like terms
 - e) Multiply numerator and denominator by the same expression
- f) Add and subtract equal values to obtain an equivalent expression
 - 3. Use trig identities:
 - d) Know your identities and look for ways to apply them
 - e) If one side contains only one trig function, try to rewrite all functions on the other side in terms of that function
 - f) It may be helpful to rewrite all expressions in terms of sines and cosines
 - 4. Continue until the side you are working on is identical to the other side
 - 5. As you work, keep in mind what you are working toward.
 - Remember: you must show all of your work and you must work down the page and keep the equal signs aligned.

(1)
$$\cot \theta = \cos \theta \cdot \csc \theta$$

$$= \cos \theta \cdot 1$$

$$= \frac{\cos \theta}{\sin \theta}$$

$$\cot \theta = \cot \theta$$

 $Sin^2X - COS^2X$

SINXCOSX

SINXCOSX

Sec2x - csc2x = Sec2x - csc3x

$$\frac{3 \cdot 1 - \cos x}{(\sin x) \sin x} = \frac{\sin x}{1 + \cos x}$$

$$\frac{\sin x}{(1 - \cos^2 x)}$$

$$\frac{\sin x}{(1 - \cos^2 x)}$$

$$\frac{\sin x}{(1 + \cos x)}$$

$$\frac{\sin x}{(1 + \sin x)}$$

$$\frac{\cos x}{(1 + \sin x)}$$