SEQUENCES AND SERIES

<u>ARITHMETIC</u> Explicit: $a_n = dn + a_0$ or $a_n = a_1 + d(n-1)$	<u>GEOMETRIC</u> Explicit: $a_n = a_1 \cdot r^{n-1}$ or $a_n = a_0 r^n$
Summation: $S_n = \frac{n}{2}(a_1 + a_n)$	Finite Summation: $S_n = \frac{a_1(1-r^n)}{1-r}$
	Infinite Summation: $S = \frac{a_1}{1-r}$

1) Write the first five terms and then write the explicit equation for the following sequences...

A)
$$a_1 = \frac{-1}{2}, d = 2$$
 B) $a_1 = \frac{2}{3}, r = \frac{-1}{2}$

2) Given $a_2 = 9$ and $a_{k+1} = a_k - 3$, find a_5 .

#3-6, Find the explicit equation and then find the indicated term.

______3) If the 3rd term of an arithmetic sequence is 94 and the 6th term is 85, find the 15th term.

4) If the 4th term of a geometric sequence is -18 and the 7th is $\frac{2}{3}$, find a{10}

_____ 6) If the 3rd term of a geometric sequence is -32 and the 6th term is 2048, find the 10^{th} term.

#7-8, Find the indicated partial sum of the following sequences.

_____7) Find $\sum_{i=0}^{3} (2i+5)$ _____8) $\sum_{n=1}^{5} 5 \left(\frac{1}{2}\right)^{n-1}$

#9-13, Find the indicated partial sum of the following sequences.

_____ 9) 40, 37, 34, 31, ... n = 25 _____ 10) If $a_n = 5n - 1$ find S_{70}

_____ 11) If $a_n = \frac{1}{2} (-3)^n$ find S_{14} _____ 12) Find S_{60} of the series 2, 6, 10, 14, ...

13) Find S_5 for $5, \frac{-5}{3}, \frac{5}{9}, \frac{-5}{27}, \cdots$

14) A paper manufacturer buys a machine for \$120,000. At the end of each year the depreciated value will be 70% of what it was at the beginning of the year. Find the depreciated value of the machine after 5 full years.

#15-18, Find the sum of the infinite geometric series.

15)
$$\sum_{i=1}^{\infty} \left(\frac{7}{8}\right)^{i-1}$$
 16) $\sum_{i=1}^{\infty} (0.1)^{i-1}$

17)
$$\sum_{k=1}^{\infty} 4\left(\frac{2}{3}\right)^{k-1}$$
 18) $\sum_{i=1}^{\infty} -4\left(\frac{5}{2}\right)^{n}$

#19-20, Use Pascal's Triangle to expand and simplify the expression.

19) $(x + 4)^4$ 20) $(a - 3b)^5$