\qquad

ARITHMETIC
Explicit: $a_{n}=d n+a_{0}$ or $a_{n}=a_{1}+d(n-1)$

Summation: $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

GEOMETRIC

Explicit: $a_{n}=a_{1} \cdot r^{n-1} \quad$ or $\quad a_{n}=a_{0} \cdot r^{n}$

Finite Summation: $\quad S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$
Infinite Summation: $S=\frac{a_{1}}{1-r}$

1) Write the first five terms and then write the explicit equation for the following sequences..
A) $a_{1}=\frac{-1}{2}, d=2$
2) Given $a_{2}=9$ and $a_{k+1}=a_{k}-3$, find a_{5}.
\#3-6, Find the explicit equation and then find the indicated term.
3) If the $3^{\text {rd }}$ term of an arithmetic sequence is 94 and the $6^{\text {th }}$ term is 85 , find the $15^{\text {th }}$ term.
\qquad 4) If the $4^{\text {th }}$ term of a geometric sequence is -18 and the $7^{\text {th }}$ is $\frac{2}{3}$, find a_{10}
4) If the 3 rd term of a geometric sequence is -32 and the 6th term is 2048 , find the $10^{\text {th }}$ term.
\#7-8, Find the indicated partial sum of the following sequences.
\longrightarrow
5) Find $\sum_{i=0}^{3}(2 i+5)$
8) $\sum{n=1}^{5} 5\left(\frac{1}{2}\right)^{n-1}$
\#9-13, Find the indicated partial sum of the following sequences.

$$
\text { 9) } 40,37,34,31, \ldots \mathrm{n}=25 \quad \text { 10) If } a_{n}=5 n-1 \text { find } S_{70}
$$

11) If $a_{n}=\frac{1}{2}(-3)^{n}$ find S_{14}
12) Find S_{60} of the series $2,6,10,14, \ldots$
13) Find S_{5} for $5, \frac{-5}{3}, \frac{5}{9}, \frac{-5}{27}, \cdots$
14) A paper manufacturer buys a machine for $\$ 120,000$. At the end of each year the depreciated value will be 70% of what it was at the beginning of the year. Find the depreciated value of the machine after 5 full years.
\#15-18, Find the sum of the infinite geometric series.
15) $\sum_{i=1}^{\infty}\left(\frac{7}{8}\right)^{i-1}$
16) $\sum_{i=1}^{\infty}(0.1)^{i-1}$
17) $\sum_{k=1}^{\infty} 4\left(\frac{2}{3}\right)^{k-1}$

$$
\text { 18) } \sum_{i=1}^{\infty}-4\left(\frac{5}{2}\right)^{n}
$$

\#19-20, Use Pascal's Triangle to expand and simplify the expression.
19) $(x+4)^{4}$
20) $(a-3 b)^{5}$

