$\qquad$

## Review for Test 2.2-2.5

Describe the right-hand and left-hand behavior of the graph of the polynomial function.

1) $f(x)=-x^{2}+6 x+9$
2) $g(x)=-x^{5}-7 x^{2}+10 x$

Find all real zeros of the polynomial function.
3) $f(x)=2 x^{2}+11 x-21$
4) $f(t)=t^{3}-3 t$
5) $f(x)=-12 x^{3}+20 x^{2}$
6) $g(x)=x^{4}-x^{3}-2 x^{2}$

Sketch the graph of the function by applying the Leading Coefficient Test, finding the zeros of the polynomial, plotting sufficient solution points, and drawing a continuous curve through the points. 7) $f(x)=2 x^{3}+4 x^{2}$
8) $h(x)=3 x^{2}-x^{4}$



Use long division to divide.
9) $\frac{24 x^{2}-x-8}{3 x-2}$
10) $\frac{5 x^{3}-13 x^{2}-x+2}{x^{2}-3 x+1}$

Use synthetic division to divide.
11) $\frac{6 x^{4}-4 x^{3}-27 x^{2}+18 x}{x-2}$
12) $\frac{2 x^{3}-19 x^{2}+38 x+24}{x-4}$

Use synthetic division to determine whether the given values of $x$ are zeros of the function.
13) $f(x)=20 x^{4}+9 x^{3}-14 x^{2}-3 x$
a) $x=-1$
b) $x=0$
c) $x=1$
d) $x=\frac{3}{4}$

Verify the given factor(s) of the function $f$, find the remaining factors of $f$, then list all real zeros of $f$.
14) $f(x)=x^{3}+4 x^{2}-25 x-28$
factor: $(x-4)$
15) $f(x)=x^{4}-4 x^{3}-7 x^{2}+22 x+24$
factors: $(x+2)(x-3)$

Find all the zeros of the function. 16) $f(x)=3 x(x-2)^{2}$
17) $f(x)=x^{2}-9 x+8$
18) $f(x)=x^{3}+6 x$
19) $f(x)=(x+4)(x-6)(x-2 i)(x+2 i)$

Find all zeros of the function and write the polynomial as a product of linear factors.
20) $f(x)=x^{3}+4 x^{2}-5 x$
21) $g(x)=x^{3}-7 x^{2}+36$
22) $g(x)=x^{3}+6 x^{2}+5 x-12$
23) $f(x)=x^{4}+6 x^{3}+8 x^{2}-6 x-9$

Perform the indicated operation. Write your answer in simplest form.
24) $(7-4 i)+(-4+6 i)$
25) $(3+6 i)^{2}$
26) $\frac{3}{2+i}+\frac{7}{2-i}$
27) Simplify $\frac{5}{3 i-5}$
28) Simplify $i^{15}+i^{34}-i^{41}-i^{84}$
29) Multiply $(\sqrt{7}+i \sqrt{34})$ by its conjugate
30) Find a polynomial function of degree 4 that has zeros at $4,-5$, and 6 i in both factored and standard form.

