Teacher Notes- 5.3 Solving Equations Using Trig Identities Day 2

Solve each equation in the indicated domain: $[0, 2\pi)$

When the period is changed, we will get even more answers.

1. The 3 is going to give you 3 times as many answers, so, you will have 6(This is a good general rule, but be careful.)!

$$\sin(3x) = -\frac{\sqrt{3}}{2}$$

 $3x = \frac{5\pi}{3} \qquad 3x = \frac{4\pi}{3}$ $x = \frac{5\pi}{9} \qquad x = \frac{4\pi}{9}$

Add and subtract $2\pi/3$ (because this is the new period and we want coterminal angles) from the original answers to get the remaining 4.

 $x = \frac{4\pi}{9}, \frac{5\pi}{9}, \frac{10\pi}{9}, \frac{11\pi}{9}, \frac{16\pi}{9}, \frac{17\pi}{9}$

2. $2 \cos 2t - 1 = 0$

$$2\cos(2t) - 1 = 0$$

$$2\cos(2t) = 1$$

$$\cos(2t) = \frac{1}{2}$$

$$2t = \cos^{-1}\left(\frac{1}{2}\right)$$

$$2t = \frac{\pi}{3}, \frac{5\pi}{3}$$

$$t = \frac{\pi}{6}, \frac{5\pi}{6}$$

Since the period is now $\frac{2\pi}{2}$ or π , add π until you get all 4 answers! $t = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$ 3. $\tan \frac{x}{2} - 1 = 0$ $\tan \frac{x}{2} - 1 = 0$ $\tan \frac{x}{2} = 1$ $\frac{x}{2} = \tan^{-1}(1)$ $\frac{x}{2} = \frac{\pi}{4}, \frac{5\pi}{4}$ $x = \frac{\pi}{2}, \frac{5\pi}{2}$ $\frac{5\pi}{2}$ is bigger then 2π , so $x = \frac{\pi}{2}$ is our only answer.