Teacher Notes- 5.3 Solving Equations Using Trig Identities Day 2

Solve each equation in the indicated domain: $[0,2 \pi)$

When the period is changed, we will get even more answers.

1. The 3 is going to give you 3 times as many answers, so, you will have 6(This is a good general rule, but be careful.)!
$\sin (3 x)=-\frac{\sqrt{3}}{2}$
$3 x=\frac{5 \pi}{3} \quad$ or $\quad 3 x=\frac{4 \pi}{3}$
$x=\frac{5 \pi}{9}$

$$
x=\frac{4 \pi}{9}
$$

Add and subtract $2 \pi / 3$ (because this is the new period and we want coterminal angles) from the original answers to get the remaining 4.
$x=\frac{4 \pi}{9}, \frac{5 \pi}{9}, \frac{10 \pi}{9}, \frac{11 \pi}{9}, \frac{16 \pi}{9}, \frac{17 \pi}{9}$
2. $2 \cos 2 t-1=0$
$2 \cos (2 t)-1=0$
$2 \cos (2 t)=1$
$\cos (2 t)=\frac{1}{2}$
$2 t=\cos ^{-1}\left(\frac{1}{2}\right)$
$2 t=\frac{\pi}{3}, \frac{5 \pi}{3}$
$t=\frac{\pi}{6}, \frac{5 \pi}{6}$
Since the period is now $\frac{2 \pi}{2}$ or π, add π until you get all 4 answers!
$t=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
3. $\tan \frac{x}{2}-1=0$
$\tan \frac{x}{2}-1=0$
$\tan \frac{x}{2}=1$
$\frac{x}{2}=\tan ^{-1}(1)$
$\frac{x}{2}=\frac{\pi}{4}, \frac{5 \pi}{4}$
$x=\frac{\pi}{2}, \frac{5 \pi}{2}$
$\frac{5 \pi}{2}$ is bigger then 2π, so $x=\frac{\pi}{2}$ is our only answer.

